On The Capacity of Surfaces in Manifolds with Nonnegative Scalar Curvature

نویسندگان

  • Hubert Bray
  • Pengzi Miao
چکیده

Given a surface in an asymptotically flat 3-manifold with nonnegative scalar curvature, we derive an upper bound for the capacity of the surface in terms of the area of the surface and the Willmore functional of the surface. The capacity of a surface is defined to be the energy of the harmonic function which equals 0 on the surface and goes to 1 at ∞. Even in the special case of R, this is a new estimate. More generally, equality holds precisely for a spherically symmetric sphere in a spatial Schwarzschild 3-manifold. As applications, we obtain inequalities relating the capacity of the surface to the Hawking mass of the surface and the total mass of the asymptotically flat manifold.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Stretch curvature of Finsler manifolds

In this paper, Finsler metrics with relatively non-negative (resp. non-positive), isotropic and constant stretch curvature are studied.  In particular, it is showed that every compact Finsler manifold with relatively non-positive (resp. non-negative) stretch curvature is a Landsberg metric. Also, it is proved that every  (α,β)-metric of non-zero constant flag curvature and non-zero relatively i...

متن کامل

Conformal mappings preserving the Einstein tensor of Weyl manifolds

In this paper, we obtain a necessary and sufficient condition for a conformal mapping between two Weyl manifolds to preserve Einstein tensor. Then we prove that some basic curvature tensors of $W_n$ are preserved by such a conformal mapping if and only if the covector field of the mapping is locally a gradient. Also, we obtained the relation between the scalar curvatures of the Weyl manifolds r...

متن کامل

Noncoercive Ricci flow invariant curvature cones

This note is a study of nonnegativity conditions on curvature which are preserved by the Ricci flow. We focus on specific kinds of curvature conditions which we call noncoercive, these are the conditions for which nonnegative curvature and vanishing scalar curvature doesn’t imply flatness. We show that, in dimensions greater than 4, if a Ricci flow invariant condition is weaker than “Einstein w...

متن کامل

On the asymptotic scalar curvature ratio of complete Type I-like ancient solutions to the Ricci flow on noncompact 3-manifolds

Complete noncompact Riemannian manifolds with nonnegative sectional curvature arise naturally in the Ricci flow when one takes the limits of dilations about a singularity of a solution of the Ricci flow on a compact 3-manifold [ H-95a]. To analyze the singularities in the Ricci flow one needs to understand these manifolds in depth. There are three invariants, asymptotic scalar curvature ratio, ...

متن کامل

Instability of Elliptic Equations on Compact Riemannian Manifolds with Non-negative Ricci Curvature

We prove the nonexistence of nonconstant local minimizers for a class of functionals, which typically appear in scalar two-phase field models, over smooth N -dimensional Riemannian manifolds without boundary and nonnegative Ricci curvature. Conversely, for a class of surfaces possessing a simple closed geodesic along which the Gauss curvature is negative, we prove the existence of nonconstant l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008